Counting the number of releasable synaptic vesicles in a presynaptic terminal
نویسندگان
چکیده
منابع مشابه
Counting the number of releasable synaptic vesicles in a presynaptic terminal.
Synaptic transmission depends on the continued availability of neurotransmitter-filled synaptic vesicles (SVs) for triggered release from presynaptic boutons. Surprisingly, small boutons in the brain, that already contain comparatively few SVs, are thought to retain the majority of these SVs in a "reserve" pool that is not mobilized under physiological conditions. Why such a scarce synaptic res...
متن کاملEndosomal sorting of readily releasable synaptic vesicles.
Neurotransmitter release is achieved through the fusion of synaptic vesicles with the neuronal plasma membrane (exocytosis). Vesicles are then retrieved from the plasma membrane (endocytosis). It was hypothesized more than 3 decades ago that endosomes participate in vesicle recycling, constituting a slow endocytosis pathway required especially after prolonged stimulation. This recycling model p...
متن کاملImaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal
Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a sub...
متن کاملRegulation of presynaptic calcium in a mammalian synaptic terminal.
Ca(2+) signaling in synaptic terminals plays a critical role in neurotransmitter release and short-term synaptic plasticity. In the present study, we examined the role of synaptic Ca(2+) handling mechanisms in the synaptic terminals of mammalian rod bipolar cells, neurons that play a pivotal role in the high-sensitivity vision pathway. We found that mitochondria sequester Ca(2+) under condition...
متن کاملCapacitance measurements in the mouse rod bipolar cell identify a pool of releasable synaptic vesicles.
The mouse is an important model system for understanding the molecular basis of neuronal signaling and diseases of synaptic communication. However, the best-characterized retinal ribbon-style synapses are those of nonmammalian vertebrates. To remedy this situation, we asked whether it would be feasible to track synaptic vesicle dynamics in the isolated mouse rod bipolar cell using time-resolved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2009
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0811017106